Mittelwertsatz der Differentialrechnung

Mittelwertsatz der Differentialrechnung: Die Sekantensteigung zwischen den Punkten und wird als Ableitung am Punkt angenommen.

Der Mittelwertsatz (kurz MWS) ist ein zentraler Satz der Differentialrechnung, eines Teilgebiets der Analysis (Mathematik). Veranschaulicht lässt sich der Mittelwertsatz geometrisch so deuten, dass es unter den unten genannten Voraussetzungen zwischen zwei Punkten eines Funktionsgraphen mindestens einen Kurvenpunkt gibt, für den die Tangente parallel zur Sekante durch die beiden gegebenen Punkte ist. Die Sekantensteigung zwischen zwei Punkten wird damit als Tangentensteigung durch die Funktion mindestens einmal angenommen.

Globale Eigenschaften, die mit Hilfe der Sekantensteigung ausgedrückt werden können, sind so mit Hilfe des Mittelwertsatzes auf Eigenschaften der Ableitung zurückführbar. Beispiele hierfür sind die Regel von de L’Hospital oder diverse Sätze zur Kurvendiskussion (wie zum Beispiel der Satz, dass Funktionen mit positiver Ableitung streng monoton wachsen). Die Aussage des Satzes lässt sich sowohl auf den Quotienten zweier Funktionen übertragen als auch auf Funktionen mehrerer Variablen anwenden. Der Mittelwertsatz verallgemeinert den Satz von Rolle.

Der Satz wurde zuerst von Joseph-Louis Lagrange bewiesen (Théorie des fonctions analytiques 1797) und später von Augustin Louis Cauchy (Vorlesungen über Infinitesimalrechnung, Calcul infinitésimal, 1823). Pierre Ossian Bonnet bewies den Mittelwertsatz aus dem Satz von Rolle (dargestellt in den Vorlesungen über Infinitesimalrechnung von Serret, 1868).[1]

  1. Florian Cajori: On Michel Rolle’s book « Méthode pour resoudre les égalitez » and the history of Rolle’s theorem. In: Bibliotheca Mathematica, 1911, S. 310

© MMXXIII Rich X Search. We shall prevail. All rights reserved. Rich X Search